DOI: 10.1002/ejic.200600823

Synthesis and Characterisation of W^{VI} Complexes of Phosphane Oxide Ligands, $[WO_2X_2(OPR_3)_2]$ (X = F, Cl or Br; R = Me or Ph), and of the $[MoO_2F_2(OPR_3)_2]$

Martin F. Davis, [a] William Levason,*[a] Raju Ratnani,*[b] Gillian Reid,*[a] Tim Rose, [a] and Michael Webster [a]

Keywords: Tungsten / Molybdenum / Phosphane oxide / Crystal structures / Fluoride

Phosphane oxide complexes of dioxidotungsten VI , $[WO_2X_2-(OPR_3)_2]$ (X = Cl or Br, M = Ph or Me) have been prepared under anhydrous conditions from the reaction of WX_6 with $(Me_3Si)_2O$ in CH_2Cl_2 , followed by addition of OPR_3 . Some diphosphane dioxide analogues have been made similarly, viz, $[WO_2X_2(L-L)]$ { $L-L = Ph_2P(O)(CH_2)_nP(O)Ph_2$ (n = 1 or 2), $o-C_6H_4[P(O)Ph_2]_2$ }. The complexes have been characterised by elemental analysis, IR and NMR (1H and $^{31}P\{^1H\}$) spectroscopy, and the structures of $[WO_2Br_2(OPPh_3)_2]$ and $[WO_2Cl_2(OPMe_3)_2]$ determined, revealing distorted six-coordinate tungsten centres with cis- WO_2 and trans- WX_2 units. The difluorido-dioxido complexes $[MO_2F_2(OPR_3)_2]$ (M = Mo

or W) and [WO₂F₂(L'-L')] (L'-L' = 2,2'-bipyridyl, 1,10-phen-anthroline) have been prepared by fluorination of the corresponding chlorido complexes with Me₃SnF in CH₂Cl₂. These are characterised similarly and by 19 F{1H} NMR spectroscopy. Attempts to make [MO₂I₂(OPR₃)₂] were unsuccessful. No adduct formation occurs between CrO₂Cl₂ and OPPh₃ under rigorously anhydrous conditions. Crystal structures of [Me₃SnCl(OPPh₃)] and two forms of [WO₂Cl₂(1,10-phen)] are also reported and discussed.

(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007)

Introduction

The coordination chemistries of MoVI and WVI continue to attract much research effort, their importance including such diverse areas as metalloenzymes,[1] oxido-transfer reagents, catalyst precursors and epoxidation catalysts. [2-4] Complexes of the MoO_2X_2 (X = Cl or Br) with a wide range of O- and N-donor ligands are known and can be obtained by direct reaction of MoO₂X₂ [5,6] or MoO₃/aqueous HX^[7] with the ligands, or more rarely by halogenation of $[Mo(CO)_4(ligand)]$. The WO_2X_2 (X = Cl or Br) are insoluble and relatively unreactive and their chemistry has been less thoroughly explored. Some complexes were initially obtained by reaction of WO2X2 with excess molten ligand, [9] but more recently routes based upon the reaction of WOCl₄ with a disiloxane to produce WO₂Cl₂ in situ, followed by reaction with the ligand have been developed.^[10] Little is known about WO₂F₂^[11] and the only structurally characterised adduct, [WO₂F₂(2,2'-bipy)], was isolated from the decomposition of [WOF₄(2,2'-bipy)].^[12] The dark green WO₂I₂^[13] is known, but no complexes have been reported. A small number of adducts of MO_2F_2 (M = Mo or W) with phosphane oxides have been prepared from MO₃/aqueous

and the ligands, [7,14] and the structure of [MoO₂F₂(OPPh₂Me)₂] determined, although spectroscopic data are limited. The structure of [MoO₂F₂(thf)₂], obtained by hydrolysis of [MoF₄(NCl)], has also been reported.^[15] We are interested in developing the chemistry of high-valent, early transition metals with softer donors such as thioor seleno-ethers, and have reported examples with MoO₂X₂ (X = Cl or Br), [16] TiX_4 , $ZrCl_4$ and $HfCl_4$. [17] Currently we are exploring routes to WVI complexes with these ligands, and because complexes of this type are very moisture sensitive and the ligands prone to oxidation or C-S(Se) bond fission under forcing conditions, many of the routes described above are not suitable. As a prelude to this work, we describe here the synthesis and characterisation of a series of phosphane oxide complexes of WO_2X_2 (X = Cl or Br) using anhydrous conditions and a route based upon WX₆/(Me₃Si)₂O. We also describe the (anhydrous) synthesis of fluorido analogues with both MoVI and WVI using Me₃SnF^[18] as fluorinating agent. Attempts to obtain [MO₂I₂(OPR₃)₂] are also briefly discussed.

Results and Discussion

$[WO_2X_2(OPR_3)_2]$ (X = Cl or Br) Complexes

As expected, attempts to react commercial WO_2Cl_2 directly with OPR_3 (R = Me or Ph) in CH_2Cl_2 solution were unsuccessful, even after prolonged reflux. In contrast,

[[]b] Department of Pure and Applied Chemistry, M. D. S. University, Ajmer 305009, India

[[]a] School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK

"WO₂Cl₂" made in situ from reaction of WCl₆ with hexamethyldisiloxane, (Me₃Si)₂O, in anhydrous CH₂Cl₂, reacted readily with both phosphane oxides to produce [WO₂Cl₂(OPR₃)₂] in good yields as white powders, moderately soluble in chlorocarbon solvents. Similar reactions using WBr₆/(Me₃Si)₂O gave the corresponding cream [WO₂Br₂(OPR₃)₂]. To obtain pure products it is important to allow the WX₆/(Me₃Si)₂O reaction to go to completion before adding the neutral ligand; similar observations were made by Dreisch et al.[10a] who examined the synthesis of $[WO_2Cl_2(dme)]$ (dme = MeOCH₂CH₂OMe) from WOCl₄/ (Me₃Si)₂O in some detail and observed significant amounts of W^V complexes under some conditions. Gibson et al. [10c] reported that WO₂Cl₂ could not be isolated from CH₂Cl₂ solution at ambient temperatures by this route, rather offwhite tungsten siloxanes were formed. We obtained white materials, which although we did not isolate or characterise them, reacted in situ with OPR3 to give high yields of [WO₂Cl₂(OPR₃)₂], and the spectroscopic data showed no -OSiMe₃ present in the products. Extension of this route was also successful in affording diphosphane dioxide complexes $[WO_2X_2(L-L)]$ {L-L = $Ph_2P(O)CH_2P(O)Ph_2$, $Ph_2P-Ph_2P(O)Ph_2$, $Ph_2P-Ph_2P(O)Ph_2$ $(O)CH_2CH_2P(O)Ph_2$, and $o-C_6H_4[P(O)Ph_2]_2$ (Table 1), although these are only slightly soluble in chlorocarbons, and it is necessary to use larger volumes of solvent and longer reaction times, and also to recrystallise the products to obtain pure samples. The spectroscopic data on the [WO₂X₂-(OPR₃)₂] complexes (Table 1) are consistent with the limited literature data^[9] and the geometries were confirmed by crystal structures of two examples (below). In particular two medium intensity features in the IR spectra in the range 900–965 cm⁻¹ are the v_{sym} and v_{asym} vibrations of the cis-WO₂ group [for the OPMe₃ complexes ρ(PMe₃) modes in the same region complicate the assignments – see Table 1], whilst the trans-WX₂ units have single bands at ca. 310 cm⁻¹ (X = CI) or ca. 240 cm⁻¹ (X = Br). The v(PO) modes occur as broad features typically shifted to low frequency by 40-70 cm⁻¹ from the values in the parent OPR₃. Trends in the spectroscopic data with changes in halogen and between

corresponding Mo and W complexes are discussed further in a later section.

The structures of [WO₂Br₂(OPPh₃)₂] and [WO₂Cl₂-(OPMe₃)₂] are shown in Figure 1 and Figure 2 and selected bond lengths and angles are in Table 2 and Table 3. Both structures show distorted octahedral coordination at tungsten with trans-halides and with the phosphane oxide trans to W=O and with the X-W-X bent towards the neutral ligands and away from the WO2 groups. The data can be compared with that for [WO₂Cl₂(OPPh₃)₂]^[9b] which has W=O 1.706(8), 1.702(9) Å, W-Cl 2.385(3), 2.366(3) Å, and W-O(P) 2.175(8), 2.163(7) Å, P-O 1.499(8), 1.500(7) Å, O=W=O 102.2(4)° and Cl-W-Cl 163.5(1)°. Thus for $[WO_2X_2(OPPh_3)_2]$ (X = Cl or Br), the W=O, W-O(P) and P-O distances are the same within experimental error. The same basic features are present in the structure of [WO₂Cl₂(OPMe₃)₂]. The structures are also very similar to those of the molybdenum analogues reported previously.^[6,7] As noted before, the M–O–P angle is rather variable. Within each structure, the M-O-P angles at the two phosphane



Figure 1. View of the structure of [WO $_2$ Br $_2$ (OPPh $_3$) $_2$] with numbering scheme adopted. H atoms have been omitted for clarity and the ellipsoids are drawn at the 50% probability level.

Table 1. Selected spectroscopic data.

Compound	$\delta(^{31}P\{^{1}H\})/ppm^{[a]}$	$\delta(^{19}F\{^{1}H\})/ppm^{[a]}$	υ(W=O) [cm ⁻¹] ^[b]	υ(P=O) [cm ⁻¹] ^[b]	υ(W–X) [cm ⁻¹] ^[b]
[WO2F2(OPMe3)2]	59.9	-65.9 (J = 110 Hz)	956.935.896 ^[c]	1144, 1097	555
[WO2Cl2(OPMe3)2]	61.9	-03.7 (3 - 110 112) -	957, 937, 894 ^[c]	1148, 1085	305
[WO2Br2(OPMe3)2]	63.9	_	956, 938, 891 ^[c]	1155, 1100	235
$[WO_2F_2(OPPh_3)_2]$	40.2	-61.8 (J = 91 Hz)	963, 918	1164, 1096	584
[WO ₂ Cl ₂ (OPPh ₃) ₂]	42.1	_	959, 911	1156, 1140	310
[WO ₂ Br ₂ (OPPh ₃) ₂]	43.3	_	960, 914	1169, 1140	238
$[WO_2Cl_2\{Ph_2P(O)CH_2P(O)Ph_2\}]$	40.3	_	963, 912	1156	324, 304
$[WO_2Br_2\{Ph_2P(O)CH_2P(O)Ph_2\}]$	43.7	_	961, 910	1150	239
$[WO_2Cl_2\{Ph_2P(O)(CH_2)_2P(O)Ph_2\}]$	47.1	_	957, 909	1173, 1145	317, 300
$[WO_2Cl_2\{o-C_6H_4[P(O)Ph_2]_2\}]$	44.7	_	959, 915	1174, 1148	313
$[WO_2Br_2\{o-C_6H_4[P(O)Ph_2]_2\}]$	45.9	_	958, 913	1169, 1160	234
$[MoO_2F_2(OPMe_3)_2]$	55.4	-57.2	955,943,906,892 ^[c,d]	1141, 1092	566 ^[e]
$[MoO_2F_2(OPPh_3)_2]$	38.5	-51.1	949, 915 ^[d]	1141, 1083	587 ^[e]
$[WO_2F_2(2,2'-bipy)]$	_	-69.6 (J = 95 Hz)	962, 921	_	584
$[WO_2F_2(1,10-phen)]$	_	-68.0 (J = 96 Hz)	961, 926	_	585

[a] In CH₂Cl₂ solution. [b] Nujol mull, OPMe₃ has $v(PO) = 1161 \text{ cm}^{-1}$, OPPh₃ has $v(PO) = 1195 \text{ cm}^{-1}$. [c] $\rho(PMe_3)$ in uncoordinated OPMe₃ occurs at 955, 937 and 867 cm⁻¹ therefore assignment of v(M=O) uncertain. [d] v(Mo=O). [e] v(Mo=F).

oxides vary by 6° (Ph) and 9° (Me) with the mean angle for OPMe₃ some 25° smaller than that in the OPPh₃ complex.

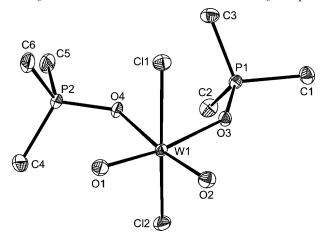


Figure 2. View of the structure of [WO $_2$ Cl $_2$ (OPMe $_3$) $_2$] with numbering scheme adopted. H atoms have been omitted for clarity and the ellipsoids are drawn at the 50% probability level.

Table 2. Selected bond lengths $[\mathring{A}]$ and angles [°] for $[WO_2Br_2-(OPPh_3)_2]$.

W1-O1	1.709(4)	W1-Br1	2.5469(7)
W1-O2	1.708(4)	W1-Br2	2.5398(7)
W1-O3	2.166(3)	P1-O3	1.511(4)
W1-O4	2.161(3)	P2-O4	1.508(4)
P-C	1.792(5)-1.809(5)		
O1-W1-O2	101.89(19)	O1-W1-O3	167.61(17)
O1-W1-O4	90.70(17)	O2-W1-O3	90.34(16)
O2-W1-O4	167.25(15)	O3-W1-O4	77.15(13)
Br1-W1-Br2	166.14(2)	O-P-C	108.6(2)-116.5(2)
W1-O3-P1	159.2(2)	O1/O2-W1-Br	92.93(13)-96.10(14)
W1-O4-P2	165.4(2)	O3/O4-W1-Br	83.65(10)-85.81(10)

Table 3. Selected bond lengths [Å] and angles [°] for [WO₂Cl₂-(OPMe₃)₂].

W1-O1	1.718(2)	W1-C11	2.3888(9)
W1-O2	1.717(2)	W1-C12	2.3881(9)
W1-O3	2.125(2)	P1-O3	1.518(2)
W1-O4	2.190(2)	P2-O4	1.522(2)
P-C	1.769(4)-1.785(3)		
O1-W1-O2	102.66(10)	O1-W1-O3	166.53(9)
O1-W1-O4	88.70(9)	O2-W1-O3	90.80(9)
O2-W1-O4	168.43(9)	O3-W1-O4	77.87(8)
C11-W1-C12	164.08(3)	O-P-C	108.48(14)-112.77(14)
W1-O3-P1	141.87(13)	O1/O2-W1-Cl	93.58(7)-96.78(8)
W1-O4-P2	131.01(12)	O3/O4-W1-Cl	82.23(6)-84.54(6)

$[MO_2F_2(OPR_3)_2]$ (M = Mo or W) Complexes

The [MoO₂Cl₂(OPR₃)₂]^[6] complexes were dissolved in anhydrous CH₂Cl₂ and stirred with a 50% excess of powdered Me₃SnF for ca. 24 h, which slowly dissolves as the reaction proceeds, to form [MoO₂F₂(OPR₃)₂] and Me₃SnCl. The completion of the reaction is best monitored by checking the ³¹P{¹H} NMR spectrum of the reaction mixture for complete loss of the resonance of the [MoO₂Cl₂(OPR₃)₂] starting material, because we found that

reaction times were quite variable, ranging from ca. 4–20 h. The polymeric Me₃SnF is insoluble in chlorocarbons and only dissolves as the reaction proceeds, and this solid-solution reaction probably accounts for the highly variable reaction times. It is also important to use sufficient solvent volume to prevent the product complexes from separating out on the suspended Me₃SnF. When reaction is complete, unreacted Me₃SnF was removed by filtration, the solvent and most of the Me₃SnCl pumped off in vacuo, and the residue washed thoroughly with n-hexane to remove any residual Me₃SnCl (Me₃SnCl is easily detected in the ¹H NMR spectra as singlet at $\delta = 0.62$ ppm with ^{119/117}Sn satellites). The corresponding reactions of [WO₂Cl₂(OPR₃)₂] with Me₃SnF were carried out similarly, although the reaction times required are longer, and sometimes insoluble by-products are formed, which contain broad IR bands 850-700 cm⁻¹ presumably due to W-O-W bridges. In attempts to overcome these problems we explored the effects of using [WO₂Cl₂(OPR₃)₂]/Me₃SnF ratios of 1:2 (stoichiometric), 1:3 and 1:4, and also adding excess OPR₃ (ca. 2 mol. equiv.) to suppress oligomerisation, because it is known that the W=O groups exhibit a trans labilising effect. [14] In fact we find that the best route is to use rigorously anhydrous conditions, stoichiometric [WO₂Cl₂(OPR₃)₂]/Me₃SnF ratio (1:2), without added OPR₃, and dilute solutions. Excess phosphane oxide forms adducts with the Me₃SnX (see below) making it harder to remove after the reaction is complete. After removing all volatiles in vacuo, the products were washed with anhydrous hexane, and the residue recrystallised from anhydrous CH2Cl2, discarding any insoluble material. The ³¹P{¹H} NMR spectra obtained during the reactions show an additional resonance intermediate in chemical shift between those of the dichlorido- and difluorido-species, almost certainly due to [WO₂ClF(OPR₃)₂] (although no attempt was made to isolate these), indicating that fluorination occurs stepwise. We also made [WO₂F₂(OPMe₃)₂] by adding excess OPMe₃ in ethanol to a solution of "tungstic acid" (hydrated WO₃) in aqueous HF and allowing the solution to evaporate in air,[14] until very small colourless crystals separated (ca. 3 d). The products from the two routes were spectroscopically identical.

A small number of white crystals were isolated as a byproduct from the [WO₂Cl₂(OPPh₃)₂]/Me₃SnF reaction and were identified by a crystal structure determination as [Me₃SnCl(OPPh₃)]. The structure (Figure 3, Table 4) reveals a trigonal-bipyramidal tin centre with equatorial methyl groups. The structure of the parent molecule Me₃SnCl is also composed of distorted trigonal-bipyramidal units with axially disposed asymmetric chlorine bridges [Sn-Cl 2.430(2), 3.269(2) Å]. [19] The Sn-C bonds are not significantly different between the parent [2.119 Å (av)] and the phosphane oxide adduct [2.120 Å (av)], and in the adduct the OPPh₃ simply replaces the longer Sn-Cl bridging interaction. The weak coordination of the phosphane oxide is evident in the long d(Sn-O) = 2.375(2) Å and short d(P-C)O) = 1.497(2) Å, which may be compared with values in $[SnX_4(OPPh_3)_2]$, which range from d(Sn-O) = 2.050(3) Å (X = F) to 2.13 Å (av) (X = I) and d(P-O) range from

1.523(3)–1.485 Å.^[20] The compound has been reported several times before^[21] and the ¹H and ³¹P{¹H} NMR spectroscopic data in CH_2Cl_2 solution are little different from those of the constituents, suggesting only weak interaction in solution.

Figure 3. View of the structure of [Me₃SnCl(OPPh₃)] with numbering scheme adopted. H atoms have been omitted for clarity and the ellipsoids are drawn at the 50% probability level.

Table 4. Sel [Me ₃ SnCl(OI	lected bond PPh ₃)].	lengths [Å] ar	nd angles [°] for
Sn1–Cl1	2.515(1)	Sn1–O1	2.375(2)
P1-O1	1.497(2)	Sn1-C19	2.125(4)
Sn1-C20	2.116(4)	Sn1-C21	2.119(4)
O1-Sn1-Cl1	177.57(7)	C19-Sn1-Cl1	94.71(10)
C20-Sn1-C11	93.39(11)	C21-Sn1-C11	94.84(12)
C19-Sn1-O1	85.43(11)	C20-Sn1-O1	88.64(11)
C21-Sn1-O1	83.03(12)	C-Sn1-C	117.4(2)-121.1(2)

The spectroscopic data on the four fluorido Mo^{VI} and W^{VI} complexes are given in Table 1. The *trans*-MF₂ units exhibit a strong IR vibration ca. 550–590 cm⁻¹. The [MoO₂F₂(OPR₃)₂] exhibit sharp singlet ¹⁹F NMR resonances at δ = –51.7 (R = Ph) or –57.2 (R = Me), and the ⁹⁵Mo resonances appear as broad triplets at δ = –114 (R = Ph) or –93 (R = Me) with ¹J(⁹⁵Mo-¹⁹F) ca. 115–120 Hz. Literature data on molybdenum fluorides are sparse, and the only closely related species appears to be [MoO₂F₂-(acac)]⁻ which has δ (¹⁹F) = –53.0, δ (⁹⁵Mo) = –76.3 (t) ¹J(⁹⁵Mo-¹⁹F) = 114 Hz.^[22] The [WO₂F₂(OPR₃)₂] complexes exhibit ¹⁹F NMR resonances in a similar region to the molybdenum analogues (Table 1), with ¹⁸³W satellites ¹J(¹⁸³W-¹⁹F) ca. 90–110 Hz. The ¹⁹F resonances are significantly to low frequency of those in WF₆ or WOF₄ adducts.^[23]

As a further test of this method, the [WO₂Cl₂(L–L)] (L–L = 2,2'-bipy, 1,10-phen), originally obtained from WO₂Cl₂ and the molten diimines, ^[9a] were prepared from WCl₆/ (Me₃Si)₂O and the appropriate diimine, and then fluorinated with Me₃SnF, in these cases under reflux for 48 h, due to the poor solubility of reagents and products. The [WO₂F₂(L–L)] are poorly soluble, white powders (Table 1), with the data in good agreement with those reported^[12] for [WO₂F₂(L–L)] made from [WOF₄(2,2'-bipy)] or from

[WOF₂(OEt)₂]. During this work two different crystalline forms of [WO₂Cl₂(1,10-phen)] were obtained, an unsolvated form (the structure of which has been reported previously)[24a] and a 1:1 CH₂Cl₂ solvate. The structures of both were determined (see Table 5 and Figure 4 and Figure 5). The distortions from regular octahedal angles at W are similar to those observed above for the phosphane oxides, but with the O=W=O angle ca. 4° larger and the Cl-W-Cl angle ca. 6° smaller in the 1,10-phenanthroline complexes. The tungsten residues in these two structures have very similar bond lengths and angles and they provide good examples of the effect of chemical environment on molecular geometry.[24b] The data on the unsolvated form agree well with that reported.^[24a] Comparison of the data show that d(W=O) and d(W-CI) differ little from the values in the phosphane oxide adduct, indicating that these are the dominant bonds to tungsten, with the neutral ligands filling the remaining coordination sites.

Table 5. Selected bond lengths [Å] and angles [°] for [WO₂Cl₂(1,10-phen)] species. (a) [WO₂Cl₂(1,10-phen)]·CH₂Cl₂. (b) [WO₂Cl₂(1,10-phen)]. [a]

(a)			
W1-O1	1.717(2)	W1-C11	2.3623(10)
W1-O2	1.721(2)	W1-C12	2.3518(10)
W1-N1	2.318(3)	W1-N2	2.303(3)
N-C	1.321(4)-1.363(4)		
O1-W1-O2	106.23(11)	O1-W1-N1	92.55(10)
O1-W1-N2	163.21(10)	O2-W1-N1	161.20(10)
O2-W1-N2	90.56(10)	N1-W1-N2	70.67(9)
C11-W1-C12	157.93(3)		
O-W1-Cl	96.23(9)-96.96(8)	N-W1-C1	80.29(7)-81.41(7)
(b)			
W1-O1	1.718(3)	W1-N1	2.298(3)
W1-C11	2.3586(12)	N1-C	1.340(5), 1.353(5)
O1-W1-O1a	106.7(2)	O1-W1-N1	91.27(12)
O1-W1-N1a	162.05(13)	N1-W1-N1a	70.81(16)
Cl1-W1-Cl1a	157.34(6)		
O1-W1-Cl	96.31(11), 97.17(10)	N1-W1-C1	80.50(8), 81.07(8)

[a] Symmetry operation: a = 1-x, y, 1/2-z.

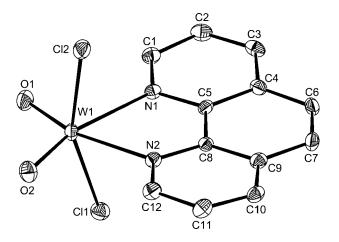


Figure 4. View of the structure of [WO₂Cl₂(1,10-phen)]·CH₂Cl₂ with numbering scheme adopted. The solvate molecule is not shown, H atoms have been omitted for clarity and the ellipsoids are drawn at the 50% probability level.

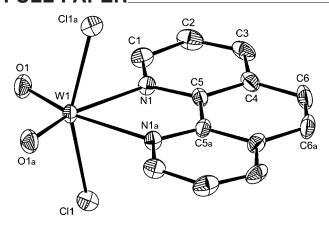


Figure 5. View of the structure of [WO₂Cl₂(1,10-phen)] with numbering scheme adopted. H atoms have been omitted for clarity and the ellipsoids are drawn at the 50% probability level. The molecule has crystallographic twofold symmetry. Symmetry operation: a = 1-x, y, 1/2-z.

Attempted Preparation of [MO₂I₂(OPR₃)₂]

A CH₂Cl₂ solution of [MoO₂Cl₂(OPPh₃)₂] treated with 2.5 equiv. of Me₃SnI, slowly developed a dark green colour. After ca. 24 h an in situ ³¹P{¹H} NMR spectrum showed that the [MoO₂Cl₂(OPPh₃)₂] had been completely consumed, and there were no new phosphorus resonances. Evaporation of the solution gave a paramagnetic greenbrown solid which showed no evidence of v(MoO₂) vibrations in the IR spectrum, and the UV/Vis spectrum contained, in addition to intense bands > 25000 cm⁻¹, a broad, weak feature ca. 16000 cm⁻¹ assignable as a d-d transition, consistent with the reduction of the molybdenum to a lower oxidation state. The reaction of [WO₂Cl₂(OPPh₃)₂] with Me₃SnI was very slow, but after 7 d a yellow solution formed and a ³¹P{¹H} NMR spectrum of this solution showed that all the chlorido complex had reacted. However, neither the IR nor the ³¹P{¹H} NMR spectra of the product(s) were consistent with the formation of [WO₂I₂-(OPPh₃)₂], and we conclude that the latter is not formed by this route.

Some Comparisons

The spectroscopic data on the $[MO_2X_2(OPR_3)_2]$ complexes show no systematic variation in $\upsilon(PO)$ or $\upsilon(MO_2)$, for which the broadness of the bands and probably some coupling to other modes are responsible. However, systematic trends are evident in the multinuclear NMR spectroscopic data. The $^{31}P\{^{1}H\}$ NMR chemical shifts of the coordinated phosphane oxides show high frequency shifts F < Cl < Br (Table 1 and Table 6), the opposite of that expected on electronegativity grounds, and probably reflecting less effective $\pi(X) \rightarrow Mo$ donation as the halogen orbitals become larger. Similarly, the ^{95}Mo chemical shifts show an inverse halogen dependence, also seen in MoO_2X_2 (X = Cl or Br) complexes with N-donor ligands, $^{[25]}$ although this appears to be the first time data have been available for complexes containing F. (Our attempts to record ^{183}W

NMR spectroscopic data for that series of compounds were unsuccessful due to the poor solubility of the complexes and the inherent insensitivity of the W nucleus.) The changes between the corresponding Mo and W complexes are also systematic for fixed OPR₃ and X, the ³¹P{¹H} chemical shift is always slightly to higher frequency for M = W than Mo, whilst the ¹⁹F chemical shifts in the fluorides are to lower frequency for the tungsten complexes.

Table 6. 95Mo and 31P{1H} NMR spectroscopic data. [a]

Compound	δ(⁹⁵ Mo) [ppm]		δ(³¹ P{ ¹ H}) [ppm]
$[MoO_2F_2(OPMe_3)_2]$	-95 (t)	$^{1}J(^{95}\text{Mo-}^{19}\text{F}) = 115 \text{ Hz}$	55.4
$[MoO_2F_2(OPPh_3)_2]$	-114(t)	$^{1}J(^{95}\text{Mo-}^{19}\text{F}) = 120 \text{ Hz}$	38.5
$[MoO_2Cl_2(OPMe_3)_2]^{[b]}$	149		59.1
$[MoO_2Br_2(OPMe_3)_2]^{[b]}$	179		60.6
$[MoO_2Cl_2(OPPh_3)_2]^{[b]}$	137		40.6
$[MoO_2Br_2(OPPh_3)_2]^{[b]}$	171		42.0
$[Et_4N][MoO_2F_2(acac)]^{[c]}$	-73.5 (t)	$^{1}J(^{95}\text{Mo-}^{19}\text{F}) = 114 \text{ Hz}$	

[a] In CH₂Cl₂ solution. [b] Data from ref.^[6] [c] Data from ref.^[22]

Attempted Synthesis of Chromium(VI) Analogues

The extensive data obtained on the series of MoVI and WVI [MO₂X₂(OPR₃)₂] compounds, prompts the consideration of the 3d analogues containing CrVI. Chromyl fluoride, CrO₂F₂, is an orange gas and a powerful fluorinating agent,[26] whilst CrO2Br2 is very unstable, decomposing rapidly above ca. 210 K, [27] seemingly ruling out any coordination chemistry. However, the commercially available CrO₂Cl₂ was briefly examined. The UV/Vis spectrum of a solution of freshly distilled chromyl chloride in anhydrous CH₂Cl₂ exhibited a strong broad band at ca. 26000 cm⁻¹ and a weak broader feature at ca. 18000 cm⁻¹, [28] and these bands were unchanged on addition of dry OPPh3, indicating no adduct formation. Over a few hours the initially deep orange-red solution turns red-brown and new weak features appear at low energy, which we assign to reduction to d¹ Cr^V. Decomposition is much faster in the presence of moisture or in bright light. The ³¹P{¹H} NMR spectrum of a mixture of CrO₂Cl₂ and OPPh₃ in rigorously anhydrous CH₂Cl₂ also shows no reaction, but in the presence of traces of moisture a resonance at δ ca. +46 ppm appears due to the formation of Ph₃POH⁺.^[29] On a preparative scale, the reaction of CrO₂Cl₂ and OPPh₃ (1:1 mol. ratio) in anhydrous CH2Cl2 gave a deep red solution, which on removal of all volatiles in vacuo at 25 °C, left a sticky redbrown, paramagnetic solid. The IR spectrum of the solid showed no uncoordinated OPPh3, but a broad feature at ca. 1140 cm⁻¹ was assignable to coordinated phosphane oxide, and features at ca. 970 and 875 cm⁻¹ may be v(CrO)modes. The evidence points to the red-brown solid being a CrV species (or mixture of CrV compounds), and there is no evidence that CrO₂Cl₂ forms adducts with phosphane oxides. This contrasts with the behaviour of VOCl₃ which forms [VOCl₃(OPPh₃)] and [VOCl₃(OPMe₃)₂].^[30] A few adducts of CrO₂Cl₂ with N-heterocycles, amines or amides have been claimed on the basis of analytical and IR spectroscopic data,^[31] but it appears that these are chloridooxidochromate(V) species with protonated N-base cations.^[32] A literature search failed to find any clearly established examples of Cr^{VI} compounds with coordination numbers > 4, except in the oxide-fluorides^[26] or imido complexes.^[33]

Conclusions

A route to $[WO_2X_2(OPR_3)_2]$ (X = Cl or Br) compounds using anhydrous conditions has been developed, and the (also anhydrous) fluorination of these and related complexes achieved using Me₃SnF. These routes should allow the synthesis of highly moisture sensitive WO₂X₂ (X = F, Cl or Br) complexes of soft ligands containing heavier groups 15 or 16 donors, and work is underway to test this approach in our laboratories.

Experimental Section

Infrared spectra were recorded as Nujol mulls between CsI plates with a Perkin-Elmer 983G spectrometer over the range 4000- $200~cm^{-1}.~^1H$ and $^{19}F\{^1H\}~NMR$ spectra were recorded with a Bruker AV300 spectrometer and referenced to TMS and CFCl₃, respectively. ³¹P{¹H} and ⁹⁵Mo NMR spectra were recorded with a Bruker DPX400 spectrometer and are referenced to external 85% H₃PO₄ and aqueous Na₂MoO₄ at pH = 11, respectively. Microanalyses were undertaken by the University of Strathclyde microanalytical service. Solvents were dried prior to use and all preparations were undertaken using standard Schlenk techniques under N₂. WCl₆, OPMe₃ and OPPh₃ were obtained commercially (Alfa or Aldrich), while the other phosphane oxides were obtained by oxidation of the parent phosphane by the literature method. [34] The OPMe₃ was freshly sublimed in vacuo before use. WBr₆ was obtained by treatment of solid [W(CO)₆] with Br₂.^[35] Me₃SnF was obtained by the literature methods.[36] CrO₂Cl₂ (Aldrich) was freshly distilled, and freeze/thaw degassed immediately before use.

[WO₂Cl₂(OPMe₃)₂]: WCl₆ (0.23 g, 0.58 mmol) and (Me₃Si)₂O (0.19 g, 1.7 mmol) were stirred in anhydrous CH₂Cl₂ (30 cm³) under N₂ when the red solution rapidly turned orange (WOCl₄) and then colourless. After 2 h, OPMe₃ (0.12 g, 1.3 mmol) in CH₂Cl₂ (10 cm³) was added. The solution was stirred for a further ca. 2 h. The resulting colourless solution was filtered and the solvent removed in vacuo. The white solid was washed thoroughly with hexane (100 cm³) and dried in vacuo. Yield 0.26 g, 95%. C₆H₁₈Cl₂O₄P₂W (470.9): calcd. C 15.3, H 3.9; found C 15.2, H 4.1. ¹H NMR (CDCl₃): δ = 1.82 (d, ${}^2J_{\rm PH}$ = 13.2 Hz, Me) ppm.

[WO₂Cl₂(OPPh₃)₂]: Method as above to give a white solid. Yield 91%. $C_{36}H_{30}Cl_{2}O_{4}P_{2}W\cdot CH_{2}Cl_{2}$ (928.2): calcd. C 47.9, H 3.5; found C 47.5, H 3.2. ¹H NMR (CDCl₃): δ = 7.30–7.75 (m, Ph) ppm.

[WO₂Cl₂{Ph₂P(O)CH₂P(O)Ph₂}]: Method as above to give a white solid. Yield 89%. C₂₅H₂₂Cl₂O₄P₂W (703.2): calcd. C 42.7, H 3.1; found C 42.8, H 3.1. ¹H NMR (CDCl₃): δ = 3.86 (t, 2 H, CH₂), 7.35–7.90 (m, 20 H, Ph) ppm.

[WO₂Cl₂{Ph₂P(O)CH₂CH₂P(O)Ph₂}]: Method as above to give a white solid contaminated with WO₂Cl₂. The [WO₂Cl₂{Ph₂P(O)-CH₂CH₂P(O)Ph₂}] was then re-dissolved in CH₂Cl₂ (10 cm³) and filtered (to remove the WO₂Cl₂). Addition of Et₂O gave the complex as a white solid. Yield 64%. $C_{26}H_{24}Cl_{2}O_{4}P_{2}W$ (717.8): calcd.

C 43.6, H 3.4; found C 44.3, H 3.4. ¹H NMR (CDCl₃): δ = 7.50–7.85 (m, 20 H, Ph), 2.67 (d, ${}^{2}J_{PH}$ = 10.5 Hz, 4 H, CH₂) ppm.

[WO₂Cl₂{*o*-C₆H₄[P(O)Ph₂]₂}]: Method as for [WO₂Cl₂{Ph₂P(O)-CH₂CH₂P(O)Ph₂}] above to give a white solid. Yield 60%. C₃₀H₂₄Cl₂O₄P₂W·(C₂H₅)₂O (839.3): calcd. C 48.7, H 4.0; found C 49.6, H 4.3. ¹H NMR (CD₂Cl₂): δ = 7.30–7.90 (m, aromatic CH) ppm.

[WO₂Br₂(OPMe₃)₂]: WBr₆ (0.17 g, 0.26 mmol) with (Me₃Si)₂O (0.08 g, 0.52 mmol) were stirred in CH₂Cl₂ (30 cm³) under N₂ for 3 h until a pale cream solution was obtained and then OPMe₃ (0.05 g, 0.54 mmol) was added, and the solution was stirred overnight. The resulting solution was filtered and pumped to dryness. The white solid obtained was washed thoroughly with hexane (100 cm³) and dried in vacuo. Yield 0.11 g, 76%. C₆H₁₈Br₂O₄P₂W (559.8): calcd. C 12.9, H, 3.3; found C 13.5, H 4.4. ¹H NMR (CDCl₃): δ = 2.02 (d, ${}^2J_{PH}$ = 13.5 Hz, Me) ppm.

[WO₂Br₂(OPPh₃)₂]: Method as [WO₂Br₂(OPMe₃)₂] to give a white solid. Yield 82%. C₃₆H₃₀Br₂O₄P₂W (932.2): calcd. C 46.4, H 3.2; found C 47.3, H 3.2. ¹H NMR (CDCl₃): δ = 7.35–7.80 (m, Ph) ppm.

[WO₂Br₂{Ph₂P(O)CH₂P(O)Ph₂}]: Method as [WO₂Br₂(OPMe₃)₂] to give a light yellow solid. Yield 94%. C₂₅H₂₂Br₂O₄P₂W (792.1): calcd. C 37.9, H 2.8; found C 38.0, H 2.9. ¹H NMR (CDCl₃): δ = 4.12 (t, 2 H, CH₂), 7.40–7.95 (m, 20 H, Ph) ppm.

[WO₂Br₂{o-C₆H₄[P(O)Ph₂]₂}]: Method as for [WO₂Cl₂{Ph₂P(O)-CH₂CH₂P(O)Ph₂}] above to give a yellow solid. Yield 69%. C₃₀H₂₄Br₂O₄P₂W·(C₂H₅)₂O (928.3): calcd. C 43.9, H, 3.7; found C 44.1, H 3.0. ¹H NMR (CDCl₃): δ = 7.33–7.85 (m, aromatic CH) ppm.

[MoO₂F₂(OPPh₃)₂]: [MoO₂Cl₂(OPPh₃)₂]^[6] (0.22 g, 0.29 mmol) was dissolved in dry dichloromethane (10 cm³), powdered anhydrous Me₃SnF (0.158 g, 0.87 mmol) added and the mixture stirred for 24 h. The solution was filtered, and the filtrate treated dropwise with hexane (5 cm³) to precipitate the complex as a white solid. This was filtered off, rinsed with hexane (5 cm³) and dried in vacuo. Yield 0.18 g, 86%. C₃₆H₃₀F₂MoO₄P₂·CH₂Cl₂ (807.5): calcd. C 55.0, H 4.0; found C 54.9, H 3.9. ¹H NMR (CDCl₃): δ = 7.20–7.80 (m, Ph) ppm.

[MoO₂F₂(OPMe₃)₂]: Was prepared similarly. Yield 91%. $C_6H_{18}F_2MoO_4P_2\cdot CH_2Cl_2$ (471.1): calcd. C 19.3, H 4.6; found C 19.2, H 4.7. ¹H NMR (CDCl₃): δ = 1.65 (d, $^2J_{PH}$ = 13.0 Hz, Me) ppm.

[WO₂F₂(OPPh₃)₂]: [WO₂Cl₂(OPPh₃)₂] (0.18 g, 0.24 mmol) was dissolved in dry CH₂Cl₂ (20 cm³), powdered Me₃SnF (0.088 g, 0.48 mmol) added and the mixture stirred for 24 h. The solution was taken to dryness in vacuo, the residue washed with anhydrous hexane (20 cm³), filtered, and the solid dissolved in anhydrous CH₂Cl₂ (50 cm³). Any insoluble material was filtered off and discarded, and the filtrate concentrated to ca. 5 cm³ and treated dropwise with hexane (5 cm³) to precipitate the complex as a white solid. This was filtered off, rinsed with hexane (5 cm³) and dried in vacuo. Yield 0.13 g, 64%. C₃₆H₃₀F₂O₄P₂W (810.4): calcd. C 53.4, H 3.7. (Repeated attempts to obtain carbon analyses on samples of this compound gave values 5–8% low and with poor reproducibility; we believe this is a combustion problem, since the samples appeared identical and spectroscopically pure). ¹H NMR (CDCl₃): $\delta = 7.20-7.80$ (m, Ph) ppm.

[WO₂F₂(OPMe₃)₂]. Method 1: In a Teflon® beaker, tungstic acid ("H₂WO₄:nH₂O") (0.15 g, ca. 0.5 mmol) was dissolved in a mixture of 40% HF (5 cm³) and water (5 cm³) with gentle warming to give

a colourless solution. The solution was cooled, decanted from any solid and a solution of OPMe₃ (0.184 g, 2.0 mmol) in ethanol (15 cm³) added. The solution was stirred for 2 h, then allowed to evaporate at room temperature. After 3 d colourless small crystals formed, the mother liquor was decanted off, the crystals rinsed with diethyl ether (5 cm³) and dried in vacuo. Yield 0.12 g 54%.

Method 2: [WO₂Cl₂(OPMe₃)₂] (0.11 g, 0.24 mmol) was dissolved in dry CH₂Cl₂ (50 cm³), powdered Me₃SnF (0.09 g, 0.50 mmol) and the mixture stirred for 48 h. The solution was taken to dryness in vacuo, the residue stirred with anhydrous hexane (50 cm³) for 3 h, the solid filtered off and dissolved in anhydrous CH₂Cl₂ (20 cm³). Any insoluble material was filtered off and discarded, and the filtrate concentrated to ca. 5 cm³ and treated dropwise with hexane (5 cm³) to precipitate the complex as a white solid. This was filtered off and dried in vacuo. Yield 0.06 g, 57% Spectroscopically the two methods gave identical products. C₆H₁₈F₂O₄P₂W (438.0): calcd. C 16.5, H 4.1; found C 16.4, H 3.8. ¹H NMR (CDCl₃): δ = 1.65 (d, ${}^2J_{PH}$ = 13 Hz) ppm.

[WO₂Cl₂(1,10-phen)]: WCl₆ (0.27 g, 0.68 mmol) was suspended in dry CH₂Cl₂ (10 cm³) and (Me₃Si)₂O (0.22 g, 1.4 mmol) added, and the mixture stirred for 2 h during which time it turned colourless. A solution of 1,10-phen (0.12 g, 0.68 mmol) in dry CH₂Cl₂ (20 cm³) was added and the mixture stirred for 2 h. The solution was filtered, and the product precipitated from the filtrate by slow addition of hexane (100 cm³), filtered off, washed thoroughly with hexane (100 cm³) and dried in vacuo. Yield 0.32 g, 84%. ¹H NMR (CDCl₃): δ = 8.06 (m, 4 H), 8.64 (m, 2 H), 9.83 (m, 2 H) ppm. IR (Nujol): \tilde{v} = 936, 919 v(WO₂), 320 v(WCl) cm⁻¹.

[WO₂Cl₂(2,2'-bipy)]: This was made analogously to the 1,10-phenanthroline complex above. Yield 85%. ¹H NMR (CDCl₃): δ = 7.08 (m, 2 H), 8.30 (m, 4 H), 9.60 (m, 2 H) ppm. IR (Nujol): \tilde{v} = 952, 915 $v(WO_2)$, 338 v(WCl) cm⁻¹.

[WO₂F₂(1,10-phen)]: [WO₂Cl₂(1,10-phen)] (0.16 g, 0.34 mmol) was suspended in anhydrous CHCl₃ (80 cm³), powdered anhydrous Me₃SnF (0.18 g, 0.98 mmol) added and the mixture refluxed for 48 h. The mixture was filtered and the filtrate concentrated to ca.

5 cm³, then treated with hexane (5 cm³) to precipitate the product, which was separated and dried in vacuo. Yield 0.10 g, 73 %. 1 H NMR (CDCl₃): δ = 8.07 (m, 4 H), 8.68 (m, 2 H), 9.85 (m, 2 H) ppm.

[WO₂F₂(2,2'-bipy)]: Was made similarly to the above. Yield 78%. ¹H NMR (CD₂Cl₂): δ = 7.78 (m, 2 H), 8.24 (m, 4 H), 9.43 (m, 2 H) ppm.

X-ray Crystallography: Details of the crystallographic data collection and refinement parameters are given in Table 7. Colourless crystals of [WO2Cl2(OPMe3)2] and light-yellow crystals of [WO2-Br₂(OPPh₃)₂] were obtained by cooling a solution of the appropriate complex in CH₂Cl₂. Crystals of [WO₂Cl₂(1,10-phen)]·CH₂Cl₂ were obtained by layering n-hexane onto a CH₂Cl₂ solution of the complex and the non-solvated complex isolated from an attempted synthesis of [WO₂F₂(1,10-phen)]. Colourless crystals of [Me₃SnCl(OPPh₃)] were obtained from the reaction mixture used to prepare [WO₂F₂(OPPh₃)₂]. Data collections used a Bruker-Nonius Kappa CCD diffractometer fitted with Mo- K_a radiation (λ = 0.71073 Å) and either a graphite monochromator or confocal mirrors. The crystals were held at 120 K in a nitrogen gas stream. Structure solution and refinement were routine^[37–39] with H atoms introduced into the models in calculated positions. The choice of space group for [Me₃SnCl(OPPh₃)] depended on a few 0k0 reflections. The reflections in this group were weaker than other zones and the choice of $P2_1/c$ or Pc-P2/c was not as clear cut as one would wish. Both $P2_1/c$ and Pc were explored and $P2_1/c$ used on the basis of providing as good a fit to the data with less parameters and avoiding the high correlations found in Pc with two molecules in the asymmetric unit. The structure agrees with unpublished work. [40] Selected bond lengths and angles are given in Table 2, Table 3, Table 4 and Table 5.

CCDC-615946 (for W/Br/Ph), -615947 (for W/Cl/Me), -615949 (for W/Cl/N/CH₂Cl₂), C-615948 (for W/Cl/N), and -615950 (for Sn/Cl) contain the supplementary crystallographic data for this paper (the atoms in parentheses indicate the species in the compounds). These

Table 7. Crystal data and structure refinement details.[a]

Compound	$[\mathrm{WO_2Br_2}(\mathrm{OPPh_3})_2]$	$[WO_2Cl_2(OPMe_3)_2]$	$[WO_2Cl_2(1,10\text{-phen})] \cdot CH_2Cl_2$	$[WO_2Cl_2(1,10\text{-phen})]$	$[Me_3SnCl(OPPh_3)] \\$
Formula	C ₃₆ H ₃₀ Br ₂ O ₄ P ₂ W	C ₆ H ₁₈ Cl ₂ O ₄ P ₂ W	C ₁₃ H ₁₀ Cl ₄ N ₂ O ₂ W	C ₁₂ H ₈ Cl ₂ N ₂ O ₂ W	C ₂₁ H ₂₄ ClOPSn
M	932.21	470.89	551.88	466.95	477.51
Crystal system	monoclinic	monoclinic	monoclinic	monoclinic	monoclinic
Space group	$P2_1/c$ (no. 14)	$P2_{I}/n$ (no. 14)	$P2_1/c$ (no. 14)	C2/c (no. 15)	$P2_1/c$ (no. 14)
a [Å]	18.883(3)	10.521(2)	8.9590(10)	13.718(4)	12.7036(10)
b [Å]	9.9430(15)	11.485(2)	13.389(3)	9.794(3)	8.5432(10)
c [Å]	19.043(3)	12.256(3)	13.226(3)	11.500(4)	20.293(2)
a [°]	90	90	90	90	90
β [°]	110.937(7)	92.338(8)	95.385(13)	121.752(15)	98.892(5)
γ [°]	90	90	90	90	90
$U[\mathring{\mathrm{A}}^3]$	3339.4(8)	1479.8(5)	1579.5(5)	1313.8(7)	2175.9(4)
Z	4	4	4	4	4
μ [mm ⁻¹]	5.987	8.376	7.995	9.195	1.376
F(000)	1808	896	1040	872	960
Total no. of observations (R_{int})	43216 (0.059)	12465 (0.031)	21531 (0.038)	8473 (0.038)	22531 (0.039)
Unique observations	7650	3387	3604	1497	4980
Min., max. transmission	0.796, 1.000	0.723, 1.000	0.702, 1.000	0.599, 1.000	0.768, 1.000
No. of parameters, restraints	406, 0	143, 0	199, 0	87, 0	226, 0
Goodness-of-fit on F^2	1.04	1.07	1.05	1.02	1.04
Residual electron density [e Å ⁻³]	-0.99 to +1.15	-1.31 to $+0.57$	-0.68 to +0.65	-1.54 to $+0.71$	-0.82 to $+0.92$
$R_1, wR_2 [I > 2\sigma(I)]^{[b]}$	0.039, 0.081	0.021, 0.043	0.022, 0.044	0.024, 0.058	0.036, 0.081
R_1 , wR_2 (all data)	0.062, 0.088	0.026, 0.044	0.026, 0.046	0.028, 0.060	0.048, 0.087

[a] Common items: temperature = 120 K; wavelength (Mo- K_a) = 0.71073 Å; θ (max) = 27.5°. [b] $R_1 = \Sigma ||F_o| - |F_c||/\Sigma |F_o|$. $wR_2 = [\Sigma w(F_o^2 - F_c^2)^2/\Sigma wF_o^4]^{1/2}$.

FULL PAPER

data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Acknowledgments

We thank the Royal Society for an Overseas Network Award and M. D. S. University, Ajmer (India) for granting a leave of absence (R. R.), and the Engineering and Physical Sciences Research Council (EPSRC) for support (M. F. D).

- J. M. Tunney, J. McMaster, C. D. Garner, Comprehensive Coordination Chemistry II (Eds.: J. A. McCleverty, T. J. Meyer), 2004, 8, 459–477, Elsevier, Amsterdam.
- [2] R. H. Holm, Chem. Rev. 1987, 87, 1401–1449.
- [3] C. G. Young, Comprehensive Coordination Chemistry II (Eds.: J. A. McCleverty, T. J. Meyer), 2004, 4, 415–527, Elsevier, Amsterdam.
- [4] T. Okamura, N. Ueyama, Comprehensive Coordination Chemistry II (Eds.: J. A. McCleverty, T. J. Meyer), 2004, 4, 529–573, Elsevier, Amsterdam.
- [5] a) K. Dreisch, C. Andersson, C. Stalhandske, *Polyhedron* 1992, 11, 2143–2150; b) K. Dreisch, C. Andersson, C. Stalhandske, *Polyhedron* 1993, 12, 301–311.
- [6] M. B. Hursthouse, W. Levason, R. Ratnani, G. Reid, *Polyhedron* 2004, 23, 1915–1921.
- [7] a) R. J. Butcher, B. R. Penfold, E. Sinn, J. Chem. Soc., Dalton Trans. 1979, 668–675; b) G. Wang, G. Chen, R. L. Luck, Z. Wang, Z. Mu, D. G. Evans, X. Duan, Inorg. Chim. Acta 2004, 357, 3223–3229.
- [8] C. G. Hull, M. H. B. Stiddard, J. Chem. Soc. A 1966, 1633– 1635.
- [9] a) B. J. Brisdon, *Inorg. Chem.* 1967, 6, 1791–1795; b) J. F. de Wet, M. R. Caira, B. J. Gellatly, *Acta Crystallogr., Sect. B* 1978, 34, 762–766.
- [10] a) K. Dreisch, C. Andersson, C. Stalhandske, *Polyhedron* 1991, 10, 2417–2421; b) H. Arzoumanian, G. Agrifoglio, M. V. Capparelli, R. Atencio, A. Briceno, A. Alvarez-Larena, *Inorg. Chim. Acta* 2006, 359, 81–89; c) V. C. Gibson, T. P. Kee, A. Shaw, *Polyhedron* 1990, 9, 2293–2298.
- [11] a) M. J. Atherton, J. H. Holloway, J. Chem. Soc., Chem. Commun. 1978, 254–255; A. K. Brisdon, J. H. Holloway, E. G. Hope, J. Fluorine Chem. 1998, 89, 35–37.
- [12] a) L. Arnaudet, R. Bougon, B. Ban, P. Charpin, J. Isabey, M. Lance, M. Nierlich, J. Vigner, *Can. J. Chem.* 1990, 68, 507–512;
 b) Yu. A. Buslaev, Yu. V. Kokunov, V. A. Bochkareva, *Russ. J. Inorg. Chem.* 1975, 20, 495–498.
- [13] a) J. Tillack, P. Eckerlin, J. H. Dettingmeijer, Angew. Chem. Int. Ed. Engl. 1966, 5, 421; b) J. Tillack, Inorg. Synth. 1973, 14, 109–122.
- [14] a) R. Kergoat, J. E. Guerchais, *Bull. Soc. Chim. Fr.* 1970, 2932–2937; b) M. Postel, J. G. Riess, J. Y. Calves, J. Guerchais, *Inorg. Chim. Acta* 1979, 32, 175–180.
- [15] M. Rhiel, S. Wacadlo, W. Massa, K. Dehnicke, Z. Anorg. Allg. Chem. 1996, 622, 1195–1199.
- [16] M. D. Brown, M. B. Hursthouse, W. Levason, R. Ratnani, G. Reid, *Dalton Trans.* 2004, 2487–2491.
- [17] a) R. Hart, W. Levason, B. Patel, G. Reid, J. Chem. Soc., Dalton Trans. 2002, 3153–3159; b) R. Hart, W. Levason, B. Patel, G. Reid, Eur. J. Inorg. Chem. 2001, 2927–2933.

- [18] E. F. Murphy, R. Murugavel, H. W. Roesky, Chem. Rev. 1997, 97, 3425–3468.
- [19] J. L. Lefferts, K. C. Molloy, M. B. Hossain, D. van der Helm, J. J. Zuckerman, J. Organomet. Chem. 1982, 240, 349–361.
- [20] a) M. F. Davis, W. Levason, G. Reid, M. Webster, *Polyhedron* 2006, 25, 930–936; b) M. F. Davis, M. Clarke, W. Levason, G. Reid, M. Webster, *Eur. J. Inorg. Chem.* 2006, 2773–2782.
- [21] a) M. Zeldin, P. Mehta, W. D. Vernon, *Inorg. Chem.* 1979, 18, 463–466; A. C. Sau, L. A. Carpino, R. R. Holmes, *J. Organomet. Chem.* 1980, 197, 181–197.
- [22] A. Stasch, M. Schormann, J. Prust, H. W. Roesky, H.-G. Schmidt, M. Noltemeyer, J. Chem. Soc., Dalton Trans. 2001, 1945–1947.
- [23] a) L. Arnaudet, R. Bougon, B. Ban, P. Charpin, J. Isabey, M. Lance, M. Nierlich, J. Vigner, *Inorg. Chem.* 1989, 28, 257–262; b) L. Arnaudet, R. Bougon, B. Ban, M. Lance, M. Nierlich, J. Vigner, *Inorg. Chem.* 1993, 32, 1142–1146.
- [24] a) S.-O. Oh, S.-J. Mo, J. Korean Chem. Soc. 1995, 39, 318–322 (CCDC Refcode TOFLEF); b) A. Martín, A. G. Orpen, J. Am. Chem. Soc. 1996, 118, 1464–1470.
- [25] F. E. Kühn, A. D. Lopes, A. M. Santos, E. Herdtweck, J. J. Haider, C. C. Romao, A. G. Santos, J. Mol. Catal. A 2000, 151, 147–160.
- [26] M. Gerken, H. P. A. Mercier, G. J. Schrobilgen, in: Advanced Inorganic Fluorides (Eds.: T. Nakajima, B. Zemva, A. Tressaud), Elsevier, NY. 2000, 5, 117–174.
- [27] E. G. Hope, W. Levason, J. S. Ogden, M. Tajik, J. Chem. Soc., Dalton Trans. 1986, 1587–1591.
- [28] P. R. Hammond, W. S. McEwan, J. Chem. Soc. A 1971, 3812–3819.
- [29] P. Mehta, M. Zeldin, Inorg. Chim. Acta 1977, 22, L33-34.
- [30] C. D. Beard, R. J. Barrie, J. Evans, W. Levason, G. Reid, M. D. Spicer, Eur. J. Inorg. Chem. 2006, 4391–4398.
- [31] a) J. Bernard, M. Camelot, C. R. Acad. Sci. 1964, 258, 5881–5883; b) R. C. Paul, O. Khosla, R. Dev, Ind. J. Chem. 1969, 7, 1254–1256; c) M. N. Majumder, R. K. Mukhopadhya, A. K. Saha, Ind. J. Chem. 1975, 13, 69–71.
- [32] E. K. Mooney, K. R. Seddon, Transition Met. Chem. 1977, 2, 215–216.
- [33] a) H.-W. Lam, G. Wilkinson, B. Hussain-Bates, M. B. Hursthouse, J. Chem. Soc., Dalton Trans. 1993, 1477–1482; b) A. A. Danopoulos, G. Wilkinson, T. K. N. Sweet, M. B. Hursthouse, J. Chem. Soc., Dalton Trans. 1995, 2111–2124.
- [34] W. Levason, R. Patel, G. Reid, J. Organomet. Chem. 2003, 688, 280–282.
- [35] a) A. K. Brisdon, E. G. Hope, W. Levason, J. S. Ogden, J. Chem. Soc., Dalton Trans. 1989, 313–316; b) P. C. Crouch, G. W. A. Fowles, R. A. Walton, J. Inorg. Nucl. Chem. 1970, 32, 329–333.
- [36] E. Krause, Ber. Dtsch. Chem. Ges. 1918, 51, 1447-1456.
- [37] G. M. Sheldrick, SHELXS-97, *Program for crystal structure solution*, University of Göttingen, Germany, **1997**.
- [38] G. M. Sheldrick, SHELXL-97, *Program for crystal structure refinement*, University of Göttingen, Germany, **1997**.
- [39] G. M. Sheldrick, SADABS, Bruker-Nonius area detector scaling and absorption correction (V2.10), University of Göttingen, Germany, 2003.
- [40] C. Yoder, A. L. Rheingold, M. B. Allen, unpublished work, 1996. [Cambridge Structural Database, refcode HIGRUK for room temperature structure].

Received: September 5, 2006 Published Online: November 14, 2006